Меню

След в небе от реактивного самолета: Почему за самолетом остается след, а иногда нет? Причины, фото и видео

Category: Разное

Содержание

Анализ феномена химиотрасс | FernFlower Group

Химиотрассы или химтрейлы (англ. chemtrails) — следы от самолетов, которые не рассеиваются долгое время, при этом могут образовывать на небе сетку. 

Изначально к химиотрассам относили конденсационные следы, которые длительное время расширяются, пока не превратятся в перистые облака, в отличие от «нормальных», которые исчезают в течение нескольких минут. Сейчас химиотрассами считаются практически все «необычные» конденсационные следы, отличающиеся, к примеру, формой, неравномерностью или другими особенностями. По утверждению сторонников идеи химиотрасс, эти явления сопровождаются ощущениями усталости и подавленности у людей в окрестных населенных пунктах. 

Данная статья направлена на то, чтобы разобраться, существуют ли химиотрассы вообще или же у тех особенностей, которые с ними связывают, существуют другие причины.

В 1996 году ВВС США опубликовали статью «Weather as a Force Multiplier: Owning the Weather in 2025» («Погода в качестве умножителя силы: владение погодой в 2025 году»), предлагавшую идею погодного оружия и ставшую основанием разработки теории химиотрасс.

Слово «химиотрассы» — русский вариант английского «chemtrails» — было введено в обиход директором Русской уфологической исследовательской станции RUFORS Николаем Субботиным, написавший в 2001 году первую в России статью о проблеме химиотрасс.

В 2007 году местное телевидение штата Луизиана сообщило о клетчатом небе и завышенной концентрации бария — 6,8 миллионных частей (втрое выше ПДК). Впоследствии пришлось взять слова обратно (концентрация оказалась в тысячу раз меньше, 6,8 миллиардных частей) — тем не менее, «джинн был выпущен из бутылки».

За период с 1996 года и по настоящее время было предложено множество гипотез об источниках химиотрасс.

 

  1. Основная версия: правительство использует самолеты (чаще всего пассажирские) для распыления аэрозольного вещества, которое может вызывать усталость и подавленность людей, а так же ряд разного рода заболеваний.
  2. Исследователь Том Донго из города Седона (шт. Аризона, США) занимается исследованием порталов и аномальной зоны, расположенной в 20 милях от Седоны, и придерживается альтернативной гипотезы использования химиотрасс. По гипотезе Тома и других исследований седонской аномалии, порталы могут являться проходами в иные измерения. А химиотрассы – это распыление некоего химического вещества для уничтожения порталов. Этой проблеме посвящена книга Тома «Пересекающиеся измерения».
  3. Американский исследователь Майк Блейр более категоричен в своих выводах относительно природы и назначения химиотрасс. В официальном докладе от 11 июня 2001 года, он четко называет основных виновников этого феномена и причины его возникновения. Основу химиотрасс составляют соли бария. Распыление этого химического вещества проходит в рамках военной программы испытания новейшей радарной системы (RFMP).
  4. Еще одна гипотеза возникновения химиотрасс связана с использованием солей бария, которые предназначены для управления погодой. Этот проект также известен как HAARP.
  5. Химиотрассы и выпадающая из них субстанция — результат работы двигателей НЛО какого-то особенного типа.

 

  • Химиотрассы расширяются, пока не превратятся в перистые облака. Иногда бывает, что самолёты устраивают на небе целую «решётку» — как правило, в ясный день.

«Химиотрассы» в небе

 

  • Химиотрассы, создаваемые воздушными судами, наблюдаются на высотах от 8000 до 33000 футов (от 2438,4 до 10058,4 м). Обычно они образуются на высотах ниже 30000 футов (9144 м). Обычный выхлоп не может сформироваться на этой высоте. Поэтому наблюдение выхлопов ниже 30000 футов с большой вероятностью является химиотрассой.
  • После пролёта самолётов на земле обнаруживают соли бария и алюминия, полимерные волокна, торий, карбид кремния или различные вещества органического происхождения, а у попавших под химиотрассу якобы ухудшается самочувствие.

Химиотрассы часто называют необычным конденсационным следом самолета. Попробуем разобраться, какой след от самолета является обычным. 

Конденсационный след (устар. инверсионный след — неверное, жарг. реактивный след — ошибочное название) — видимый след, образующийся в небе за движущимися летательными аппаратами при определённых состояниях (соотношениях параметров) атмосферы. Наблюдаются наиболее часто в верхних слоях тропопаузы, и значительно реже — в стратосфере.

Конденсационный след представляет собой отдельную группу облаков — техногенные (исскуственные) облака — Cirrus traktus (Cс trac., cirrus — перистый, tractus — следы).

Существуют две основные причины возникновения явления:

Первая — повышение влажности воздуха, когда к атмосферному водяному пару добавляется водяной пар, образованный в результате сгорания топлива. Это повышает точку росы в ограниченном объеме воздуха (за двигателями), и если она становится выше температуры окружающего воздуха, то при остывании отработанных газов избыточный водяной пар конденсируется (сублимируется). 

 

Конденсационный след

Вторая – понижение давления и температуры воздуха над крылом и внутри вихрей, возникающих при обтекании различных частей самолета. Наиболее интенсивные вихри образуются на законцовках крыла и выпущенных закрылков, а также на концах лопастей воздушных винтов. Если при этом температура опускается ниже точки росы – избыток атмосферного водяного пара конденсируется (сублимируется) в области над крылом и внутри вихрей.

 

Конденсационные следы от поршневых самолётов B-17, Вторая мировая война Отчетливо виден конденсат внутри вихрей, сбегающих с концов лопастей

 

 

Конденсационный след, образованный завихрениями с концов крыла.

Часто наблюдаются следы, образованные в результате комбинации этих двух причин. Также особое значение имеет тот факт, что на большой высоте наблюдается дефицит центров конденсации, поэтому даже при достижении температуры, меньшей точки росы, атмосферная влага часто остаётся в газообразном состоянии. Пролёт летательного аппарата вызывает появление большого количества таких центров конденсации, что способствует быстрому развитию конденсационного следа. Центрами конденсации могут быть частицы не сгоревшего или не полностью сгоревшего (сажа) топлива. По причине того, что влажность окружающего воздуха меньше, чем следа, сконденсированные или сублимированные частицы воды испаряются, и след со временем исчезает.

Таким образом, возможность появления и время существования конденсационного следа, равно как и его вид, зависят от влажности и температуры окружающей среды.

Если окружающий воздух сухой, то в дальнейшем происходит повторное испарение капельно-жидкой воды, и конденсационный след быстро рассеивается. Если же атмосфера насыщена влагой (относительная влажность близка к 100% ), то феномен может существовать длительное время. В условиях перенасыщенной влагой атмосферы конденсационный след стабилен, постепенно увеличивается в объеме и в конечном итоге вносит свой вклад в формирование слоя перистых облаков.

  • При низкой влажности и относительно высокой температуре след может отсутствовать вовсе.
  • Чем выше влажность и ниже температура, тем больше влаги конденсируется (сублимируется), тем насыщеннее и длиннее след. И он может существовать длительное время.
  • А при влажности близкой к 100% и низкой температуре — конденсируется наибольшее количество водяного пара, высокая влажность препятствует испарению частиц следа, что и влечёт образование конденсационных следов, которые могут существовать достаточно долго. Т.е. в условиях перенасыщенной влагой атмосферы конденсационный след стабилен, постепенно увеличивается в объеме и в конечном итоге вносит свой вклад в формирование слоя перистых облаков.

Конденсационные следы образуются не только на «больших» высотах полёта. На снежном (ледовом) аэродроме Полярной Станции Скот Амундсен (высота 2830 м над уровнем моря) — при определённых условиях (температура воздуха минус 50 градусов и ниже) — этот след образуется уже на взлёте или при посадке, причём за турбовинтовыми самолётами (С-130 «Геркулес» из состава «Снежного Крыла» ВВС США).

Неравномерное распределение водяного пара в атмосфере является причиной такого же «неравномерного» следа. Можно привести несколько примеров причин неравномерности следов:

Концевой вихрь крыла

Летящий самолет оставляет за собой возмущенную область атмосферы, называемую спутным следом. Этот след образуется в основном реактивными струями двигателей и концевыми вихрями от крыла. Скручивание объясняется разницей давлений на нижней и верхней поверхностях крыла. В результате перетекания воздуха из области повышенного давления на нижней поверхности крыла в область пониженного давления на верхней поверхности через его конец образуются мощные вихри. Чем больше перепад давления и, следовательно, подъемная сила, с которой поток действует на крыло, тем больше интенсивность концевых вихрей. Окружные скорости в вихревом следе диаметром 8-15 м могут достигать 150 км/ч. 

 

 

Мираж 2000 и F-16C, летящих с большим углом атаки.

Визуализация концевого вихря осуществлялась с помощью трассера-генератора дымного следа. Возмущения атмосферы, вызванные воздействием вихревого следа, существуют длительное время, постепенно затухая, снижая окружную скорость движения.

В результате взаимодействия между собой вихри постепенно опускаются и расходятся.

Наблюдая за инверсионным следом пролетевшего самолета, мы обнаруживаем, что примерно через 30-40 секунд после пролета самолета инверсионный след начинает изменять свой вид под действием развивающегося вихревого следа. При пересечении инверсионного и вихревого следов возникают весьма замысловатые формы, имеющие вполне определенные закономерности.

Количество двигателей самолета

В зависимости от количества двигателей и их расположения на самолете конденсационный след может быть одно-или двухполосный.

 

Наиболее часто повторяющиеся видоизменения конденсационного следа.
Рис. 5 – двухполосный след; На рис. 6 показано скручивание конденсационного следа под действием концевого вихря. Рис. 7 и 8 иллюстрируют более причудливые случаи взаимодействия конденсационного следа с концевым вихрем.

Таким образом, конденсационный след и его трансформация фиксируют аэродинамические процессы, сопровождающие полет самолета.

Отрывно-вихревые течения

При выполнении маневров на больших углах атаки (20° и более) резко меняется характер обтекания поверхностей самолета. На верхней поверхности крыла и фюзеляжа образуются отрывные области, в которых, вследствие понижения давления, возникают условия для конденсации атмосферной влаги. Благодаря этому можно наблюдать за полетом самолета и без трассеров.

 

 

Истребитель Су-21 в облачном ореоле, образовавшемся на верхней поверхности планера при полете на большом угле атаки.(слева). Появление вихревого жгута и области отрыва на поверхности крыла у бомбардировщика В-1А.(справа)

Яркий след форсажа

Двигатели современных самолетов-истребителей оснащены сверхзвуковыми регулируемыми соплами. Как правило, на форсажном режиме работы двигателя давление на срезе сопла превышает давление окружающего воздуха. На значительном удалении от среза сопла давление в струе и в атмосфере должны уравняться. По мере удаления от среза сопла давление в струе уменьшается, а скорость газа возрастает. Поперечное сечение струи увеличивается, что схематически показано на рисунке ниже. 

 

 

 

Газ по инерции продолжает расширяться, и в наиболее широком сечении струи давление становится ниже атмосферного. После этого струя начинает сужаться, давление в ней приближается к атмосферному, а скорость соответственно уменьшается. Торможение сверхзвукового потока приводит к возникновению прямого скачка уплотнения. В результате в некоторой части струи скорости становятся дозвуковыми, а давление соответственно выше атмосферного. Как видно, форма струи становится бочкообразной. Затем процесс повторяется.

Газовая струя имеет температуру более 2000 °К, поэтому ее свечение делает видимыми процессы, происходящие при ее истечении. Видны области яркого свечения в тех местах струи, где образуются прямые скачки уплотнения.

Таким образом, можно сделать вывод, что длительное время существования инверсионного следа зависит от ряда естественных причин и это не делает его «особенным». Он не зависит напрямую от высоты полета, а определяется только параметрами окружающей среды (температурой, влажностью и скоростью ветра).

«Сетка» из инверсионных следов может образоваться при длительном существовании инверсионного следа в силу специфики расположения воздушных трасс (наглядно это можно посмотреть в перечне и схемах воздушных трасс для своего региона или страны). 

Исходя из вышесказанного, обнаруженные на земле соли бария, различные вещества органического происхождения и т.п., от контакта с которыми якобы ухудшается самочувствие, не связаны с явлением конденсационного следа и имеют другие причины, поиск которых выходит за рамки данной статьи.

 

Благодарность за консультацию кандидату технических наук, преподавателю Военной Академии Виктору В.

Инверсионный след — это… Что такое Инверсионный след?



Инверсионный след

Инверсионные следы от самолета с четырьмя двигателями

Инверсионный след двигателей ракеты носителя «Союз»

Конденсацио́нный след (устаревшее название инверсио́нный след, часто ошибочно называемый реактивным следом) — след, оставляемый в небе летательными аппаратами, летящими на большой высоте.

Инверсионный след представляет собой туман, сконденсированный в основном из атмосферной влаги, а также в меньшей степени из влаги, содержащейся в выхлопах двигателей летательного аппарата.

Своё название он получил по названию физического феномена, свойственного верхним слоям атмосферы — инверсии относительно точки росы. В верхних слоях атмосферы отсутствуют пылевые частицы, и даже при достижении температуры, меньшей точки росы, атмосферная влага остается в газообразном состоянии, то есть прозрачной и нерассеивающей свет. Пролёт летательного аппарата в инвертированных слоях вызывает появление огромного количества таких центров конденсации, и на них мгновенно происходит конденсация пара в виде капель влаги (облачного тумана). За счёт этого траектория полета летательного аппарата становится видимой.

Центрами конденсации выступают:

  • частицы, выброшенные из камер сгорания двигателей;
  • микротурбулентные вихри, возникающие на любом аэродинамическом элементе.

Вся эта совокупность конденсирующих центров осаждает влагу в капли, причём дальнейшая судьба туманного следа зависит от параметров атмосферы в этом месте и в это время. Например, возможна дальнейшая конденсация и укрупнение капель, которые попросту выпадают в более низкие слои атмосферы. Возможно испарение капель вследствие диффузии.

Естественно, что облачный след несёт на себе отпечаток турбулентной структуры, сопровождавшей обтекание летательного аппарата, и рельефно выявляет всю вихревую фактуру потревоженного воздуха. Этим объясняются перепады плотности разного масштаба в следе, в том числе и прерывистость следа в некоторых случаях.

По заявлениям экологов, инверсионные следы оказывают влияние на климат, уменьшая температуру за счёт того, что вырождаются в тонкие высотные перистые облака, тем самым препятствуя солнечным лучам (в отличие от таких облаков обычные перистые облака не только отражают солнечные лучи, но и сохраняют под собой тепло Земли).

Wikimedia Foundation.
2010.

  • Инверс, Лина
  • Инверсия (в математике)

Смотреть что такое «Инверсионный след» в других словарях:

  • Реактивный след — Инверсионные следы от самолета с четырьмя двигателями Инверсионные следы от поршневых самолётов, Вторая мировая война Инверсионный след двигателей ракеты носителя «Союз» Конденсационный след …   Википедия

  • Конденсационный след — Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения должны быть пояснения …   Википедия

  • Атлантис STS-115 — Программа Спейс Шаттл (Space Shuttle) Эмблема экспедиции Основные данные Экспедиция: STS 115 Орбитальный модуль …   Википедия

  • STS-115 — Эмблема Полётные данные корабля Название корабля …   Википедия

  • ПВРД — Воздушно реактивный двигатель (ВРД) тепловой реактивный двигатель, в качестве рабочего тела которого используется атмосферный воздух, нагреваемый за счёт химической реакции окисления горючего кислородом, содержащимся в самом рабочем теле. Впервые …   Википедия

  • ПуВРД — Воздушно реактивный двигатель (ВРД) тепловой реактивный двигатель, в качестве рабочего тела которого используется атмосферный воздух, нагреваемый за счёт химической реакции окисления горючего кислородом, содержащимся в самом рабочем теле. Впервые …   Википедия

  • Аврора (самолёт) — У этого термина существуют и другие значения, см. Аврора. SR 91 Aurora предполагаемый вид SR 91 …   Википедия

  • Сипер, Михаил Саулович — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Сипер Михаил Саулович (род …   Википедия

  • Шанхайские рыцари — Shanghai Knights …   Википедия

  • Дезик и Цыган — в кабине ракеты перед стартом Дезик и Цыган  первые собаки, совершившие полёт на геофизической ракете В 1В (Р 1В) в верхние слои атмосферы 22 июля 1951 года с полигона Капустин Яр в Астраханской области в рамках проекта ВР 190  запуска… …   Википедия

Как называется след от самолета в небе

Жители мегаполисов лишены возможности увидеть в небе полет самолета. Наблюдать за перемещением воздушного судна могут лишь те люди, что проживают поблизости с аэропортом. Многие люди, которые видели полет самолета, знают о том, что иногда воздушное судно оставляет за собой белый след. Его появление объясняется особенностью работы двигателей самолета. В нашей статье мы предлагаем рассмотреть вопрос о том, почему самолет оставляет след в небе.

как называется след от самолета в небеЯсное небо, расчерченное ровными белыми линиями, медленно расплывающимися даже после того, как самолеты скрылись из виду, — зрелище завораживающее

Физическое объяснение явления

Вопрос о причинах появления белого следа, который тянется за воздушным судном, интересует многих детей, ставших свидетелями этого процесса. Важно отметить, что далеко не все взрослые люди способны удовлетворить интерес малышей. Для того чтобы объяснить появление инверсионного следа, необходимо понимать основные законы физики. В качестве аналогии можно использовать рассказ о причинах появления осадков в виде снега и дождя. Данное явление объясняется круговоротом воды в природе. Жидкость может иметь одно из нескольких агрегатных состояний. Самым твердым состоянием является лед, который преобразуется в жидкую массу под воздействием тепла.

Дальнейший нагрев жидкости позволяет преобразовать жидкую массу в пар, который является газообразным агрегатным состоянием. Этот пар может тоже изменить свою форму и трансформироваться в жидкость. Данная трансформация именуется процессом выделения конденсата. Важно обратить внимание на то, что наблюдать появление конденсата можно даже в домашних условиях. В качестве примера можно привести запотевание зеркала, расположенного в ванной комнате.

Конденсат образуется из микроскопических твердых частиц, которые придают пару форму, видимую человеческому глазу. Данное агрегатное состояние имеет минимальную стойкость к воздействию внешней среды. Именно поэтому туманы рассеиваются спустя определенный отрезок времени. Выделяющаяся влага смешивается с окружающей атмосферой, что приводит к выравниванию температуры.

Вышеописанный процесс может быть непонятен маленькому ребенку. Для того чтобы ребенок правильно понял этот процесс, необходимо объяснить все происходящее на практическом примере. Представим ванну, наполненную горячей водой. Уровень температуры жидкости может незначительно превышать температуру в воздухе. Пар, поднимающийся от воды, при контакте с зеркалом образует на стекле капли жидкости, которые являются конденсатом. Подобный процесс происходит и во время движения самолета, что приводит к образованию инверсионного следа.

Практические опыты

Процесс перехода жидкостей из одного агрегатного состояния в другое может быть интересен не только детям, но и взрослым. В домашних условиях можно провести небольшой опыт, для того чтобы создать условия идентичные процессу образования инверсионного следа. Для этого потребуется набрать жидкость в пластиковую бутылку и поместить ее в морозильную камеру на тридцать минут. По истечении данного временного отрезка необходимо достать емкость и поставить ее на стол. На поверхности бутылки будет постепенно появляться влага, которая является конденсатом.

Появление влаги объясняется разницей между температурой воздуха и поверхности используемой емкости. Разница этих температур приводит к образованию жидкости. Схожий пример мы наблюдаем при появлении росы на траве и листьев. Соприкосновение холодного воздуха с поверхностью растений приводит к образованию росы.

инверсионный след от самолетаПодобный эффект объясняется элементарными законами физики: виной всему конденсация

Почему появляется инверсионный след за самолетом

Для того чтобы лучше понимать взаимосвязь вышеописанного физического процесса и образование инверсионного следа, необходимо уделить внимание физике полетов. Как правило, самолеты, перемещающиеся на высоте менее восьми километров над землей, не оставляют подобные следы. Данный факт объясняется разницей температуры в разных атмосферных слоях. Температура на стандартной высоте для полетов на дальние расстояния достигает минус сорока градусов по Цельсию. Инверсионный след от самолета появляется из-за выделения конденсата, процесс образования которого был рассмотрен выше. Сам процесс образования конденсата можно разделить на несколько основных этапов:

Процесс сгорания авиационного топлива в моторе летного средства приводит к выделению горячих струй, содержащих газ и пар. Для образования углеводорода необходимо, чтобы углекислый газ смешался с жидкостью. Выхлопы двигателей летного средства сопровождаются выделением горячей жидкости. Так как температура за бортом лайнера ниже нуля, образовавшаяся жидкость трансформируется в туман.

Авиационное топливо сжигается двигателем частично. Выхлопы двигателя содержат в себе небольшие твердые частицы в виде сажи. Данные частицы выполняют роль концентрирующего вещества, смешивающего холодный и теплый воздушный поток с остатками тумана.

Площадь, по которой распространяется горячая вода, выделяющаяся из двигателя, равномерно усыпана небольшими частичками пара. Через определенный отрезок времени эти частицы преобразуются в осадки, похожие на туман. В результате данного процесса за авиалайнером образуется белый хвост.

Довольно интересен тот факт, что продолжительность отрезка времени, на протяжении которого виден инверсионный след, зависит от нескольких разных факторов. Среди них необходимо выделить уровень влажности воздуха:

  1. Наличие влажность в воздухе приводит к образованию практически незаметной полосы, которая исчезает в течение короткого отрезка времени.
  2. Высокая влажность воздуха способствует образованию четкого следа, что остается виден на протяжении длительного отрезка времени.

Довольно интересен тот факт, что высокая влажность воздуха приводит к образованию объемного следа, который со временем становится частью облаков.

Почему след виден не всегда?

Скорость кристаллизации воды, что входит в состав выхлопов двигателей, зависит от температуры за бортом. Низкая температура способствует росту скорости данного процесса. Как правило, инверсионный след практически незаметен, если самолет летит на большой высоте. Этот факт объясняется небольшой разницей температур. Самолет, поднимающийся на высоту в несколько километров, преодолевает несколько атмосферных слоев, где температура опускается ниже нуля. В случае с дальними рейсами этот показатель может достигать минус сорока градусов, что приводит к мгновенному замерзанию влаги. Этот фактор способствует образованию густого и насыщенного следа. Довольно интересен тот факт, что на первых этапах развития авиации, пилоты носили теплую одежду в любое время года. В противном случае, они бы просто замерзли в кабине транспортного средства.

Одним из важных факторов в процессе образования инверсионного следа является сила встречного воздушного потока.

почему самолет оставляет след в небеКонденсационные следы от самолетов причислены к отдельной группе облаков — техногенным, или искусственным

Отсутствие ветра приводит к образованию плотного следа, который остается виден на протяжении нескольких часов. Наличие сильного ветра в слое атмосферы, где находится самолет, приводит к быстрому исчезновению следа. В некоторых случаях, «белый хвост» имеет несколько разрывов. Наличие пустых участков свидетельствует о сильных воздушных потоках, циркулирующих в конкретном атмосферном слое.

Самолет оставляет белый след только по достижению определенной высоты. Как правило, этот след отсутствует во время взлета и посадки. Данное обстоятельно объясняется тем, что во время процесса набора высоты или снижения, воздушное судно находится в теплых слоях атмосферы. След появляется после того, как самолет поднимается на несколько тысяч метров над уровнем земной поверхности. Важно обратить внимание на тот факт, что в разных слоях атмосферы ветер может иметь разное направление. Сила ветра на земной поверхности значительно отличается от этого показателя в более высоких воздушных слоях. Это факт объясняется то, что ветер может дуть в одну сторону, а облака или тучи передвигаться в другом направлении.

Влияние инверсионных полос на окружающую среду

Рассмотрев причины возникновения инверсионных следов, необходимо обратить внимание на их влияние на экологию. Этот вопрос интересует не только обычных граждан, но и многих исследователей. Снимки, сделанные с земной орбиты, демонстрируют наличие белых полос в тех зонах, где расположены воздушные коридоры. Эти коридоры используются авиакомпаниями для перемещения воздушного транспорта.

Исследователи часто отмечают тот факт, что следы в небе препятствуют полноценному проникновению солнечного излучения на земную поверхность. Этот факт способствует снижению риска возникновения глобального потепления. Некоторые специалисты утверждают, что рассматриваемый процесс имеет негативное воздействие на окружающую среду. Инверсионные полосы, остающиеся в виде следа за самолетом, способствуют усилению парникового эффекта, что препятствует естественному процессу охлаждения воздуха.

Существует отдельная исследовательская группа, которая озабочена влиянием данных следов на климат. Эти же ученые просят авиакомпании разработать новые маршруты, пролегающие в отдалении от мест с повышенной влажностью воздуха. Следует понимать, что в данном случае увеличится продолжительность самих маршрутов. Помимо этого, неиспаряющиеся остатки авиационного топлива могут негативно воздействовать на чистоту атмосферы.

Создание метеопрогнозов на основе инверсионных полос

Существует ряд исследователей, которые способны определить изменения погодных условий наблюдая за полетом воздушного судна. Для того чтобы составить подобный прогноз, необходимо применить базовые основы физики. В верхних слоях атмосферы низкая влажность воздуха. Однако жидкость не может трансформироваться в пар без микрочастиц. Запустить этот процесс может банальная пыль или выхлопы реактивного двигателя, содержащие сажу.

Наличие четко видимой белой полосы по маршруту движения воздушного судна свидетельствует о высокой влажности воздуха. Появление такого следа свидетельствует о возможном появлении осадков. Исчезновение следа в течение нескольких минут свидетельствует о солнечной погоде, которая не изменится в ближайший отрезок времени.

самолет оставляет белый следКонденсационный след образуется, когда в сухом воздухе на большой высоте влажный выхлоп реактивного двигателя превращается в кристаллы льда

Заключение

В данной статье мы рассмотрели вопрос о том, как называется след от самолета в небе. Это явление представляет собой физический процесс во время которого выхлопы двигателей изменяют свое агрегатное состояние. Тщательное изучение данного процесса позволяет узнать о том, насколько вредны полосы конденсата для атмосферы и окружающей среды.

Сквозь облака: Почерк самолета | Журнал Популярная Механика

Летательные аппараты тоже оставляют следы в атмосфере. Иногда их даже можно увидеть

Из тумана Облако, образующееся в момент преодоления самолетом звукового барьера, вызвано резким падением давления за счет так называемой сингулярности Прандтля-Лауэрта. При соответствующей влажности воздуха в зоне низкого давления создаются условия для конденсации паров воды в мельчайшие капельки, напоминающие туман

Следы в небе Выхлоп реактивного двигателя содержит большое количество паров воды, возникающих при сгорании углеводородного топлива. На большой высоте в холодном окружающем воздухе пары воды конденсируются, образуя белый инверсный след

12 ноября 2001 года борт 587 — самолет American Airlines, следовавший из Нью-Йорка в Доминиканскую Республику, буквально развалился в воздухе почти сразу же после взлета в международном аэропорту JFK. Поскольку эта, вторая по количеству жертв, авиакатастрофа в истории американской авиации произошла вскоре после 11 сентября, сразу же возникло предположение о теракте. Но проведенное расследование показало, что причина была более прозаической: самолет попал в спутный след — зону турбулентности, созданную другим самолетом (в данном случае это был Boeing 747 Japan Airlines, пролетевший этим же воздушным коридором незадолго до борта 587). И хотя след этот был невидим, именно он привел к потере управления и в конечном итоге — к трагедии.

Выдыхая облака

Впрочем, иногда следы становятся видимыми. Белый след пролетевшего самолета хорошо выделяется в ясный солнечный день на фоне голубого неба. Этот след называется инверсионным и состоит из того же вещества, что и облака — мельчайших капелек воды. Причина его возникновения очень проста: нагретый водяной пар, образующийся при сгорании топлива, выбрасывается в атмосферу (температура которой, например, на высоте 10 км достигает 50оС), быстро остывает и конденсируется, образуя маленькие капельки воды. Правда, такой след образуется не всегда — на различных высотах атмосфера имеет различную температуру и влажность, и вероятность образования инверсионного следа зависит от этих параметров. Чтобы понять механизм инверсии, вовсе не нужно ехать на аэродром: пар изо рта, выдыхаемый человеком, и клубы пара из выхлопных труб автомашин в сильный мороз имеют ту же природу (их образование тоже зависит от температуры и влажности окружающего воздуха).

Кстати, по мнению некоторых экспертов, инверсионный след может демаскировать военные самолеты. Это наиболее важно для высотных бомбардировщиков и разведчиков, благодаря технологии Stealth «невидимых» для радиолокаторов, а также для истребителей в ближнем воздушном бою, когда обнаружение противника происходит в основном визуально. Правда, бороться с его образованием практически невозможно. Во время полета за счет особого профиля крыла скорость потоков воздуха над и под крылом получается различной (сверху выше, чем снизу). Согласно принципу Бернулли в этом случае давление на верхней поверхности крыла меньше, чем на нижней (их разница как раз и формирует подъемную силу). Из-за разницы давлений воздух перетекает через законцовку крыла, и за самолетом образуется две вихревых воронки, похожих на горизонтальные торнадо. Такие вихри имеют диаметр до 15 м, скорость потоков воздуха внутри них — до 50 м/с, они живут несколько минут и, пока не затухнут, могут быть реально опасны для самолетов, следующих этим же коридором. При взаимодействии вихревого и инверсионного следов последний начинает расплываться, что иногда приводит к весьма причудливым «завитушкам» и даже переплетениям двух следов (от двух двигателей).

В отрыв

Конденсация паров воды, «выдыхаемых» двигателями, — не единственная причина инверсионного следа, он может образоваться даже за планером, не имеющим двигателей. На авиашоу часто можно видеть, как во время показательных выступлений истребители буквально на глазах у зрителей окутываются туманом! Магия? Вовсе нет. Причина этому — отрывные течения, вихревые области пониженного давления, образующиеся на верхней поверхности крыла в определенных режимах полета (например, при выходе на большие углы атаки). Внутри этих областей за счет быстрого падения давления понижается температура и возникают условия для конденсации водяных паров, находящихся в воздухе. И хотя все это похоже на магию, на самом деле, как видите, ничего таинственного в таком тумане нет.

Статья опубликована в журнале «Популярная механика»
(№5, Май 2005).

Инверсионный след от самолета и ракеты

Большое количество разнообразных журналов, которые занимаются подборкой и анализом информации, касающейся достижений и проблем авиации, часто акцентируют внимание читателей на материальные аспекты работы и строения модернизированных устройств, таких как самолеты, ракеты, вертолеты и остальные летательные аппараты. Часто также подвергаются анализу все явления, которые происходят с внутренней и внешней структурой транспортного средства во время совершения полета. Обычно инверсионный след это отражает. Многие люди наблюдают за красивыми самолетами, которые в полете оставляют за собой ровную полосу.

Концепция данного явления

Инверсионный след формируется в тропопаузе. На его появление влияют пары воды, которые подвергаются усиленной конденсации. Они присутствуют в продуктах сгорания, так как во время сгорания равномерно расходуется углеводородное топливо. После выхода наружу и достаточного охлаждения яркий инверсионный след от самолета или другого летального аппарата в воздухе становится заметным.

Есть специальные авиашоу, которые целесообразно проводить только в солнечную погоду. Данные мероприятия организуются на аэродромах, имеющих статус наиболее крупных в мире. В это время большое количество зрителей восторженно наблюдают за движением множества самолетов, совершающих интересные маневры в воздухе. Главной отличительной чертой таких мероприятий является оставление яркого шлейфа от каждого транспортного средства. Часто делают так, чтобы каждый самолет отличался собственным цветом шлейфа, что помогает получить наиболее яркий и запоминающийся эффект.

В отличие от самолетов, ракеты постоянно оставляют за собой массивные, даже часто грозные следы, которые выглядят не только масштабно, но и имеют насыщенный цвет. Они выпускаются из самолетов, имеющих боевое назначение. Данную процедуру можно наблюдать не только при походе на специальные мероприятия, но и находясь на улице или включив телевизор на интересующем канале. Так можно увидеть инверсионный след.

Концевой вихрь крыла

Следует помнить, что самолет в полете оставляет за собой ограниченную и достаточно широкую область атмосферы, которая становится возмущенной, ее состав на долгое время переменяется. Данное явление часто именуют спутанным следом. Обычно он появляется под действием реактивных двигателей, так как при работе они постоянно осуществляют взаимодействие с окружающей средой. Также в этом процессе принимают участие концевые вихри крыльев самолета.

Если сравнивать значительно негативное воздействие на окружающую среду, то первенство всегда отдается именно концевым вихрям крыльев. Есть множество условных обозначений спутанных следов, однако чаще всего они рисуются на специальных схемах в подобии листа с необычными краями, концы которых полностью скручены, то есть можно сравнить их с вихрями.

Процесс скручивания: научная аргументация

Процесс скручивания можно легко объяснить научным образом. Проявляется яркая разница давления между обеими сторонами крыльев самолета, то есть на их верхней и нижней поверхности. Воздух постепенно перераспределяется с нижней поверхности, так как на ней наблюдается наиболее повышенное давление, на верхнюю, чтобы оставаться в области с наименьшим давлением.

Данное перераспределение происходит через конец каждого крыла, из-за чего образуются мощные и очень заметные вихри. Имеет значение сила перепада давления, так как от него зависит подъемная сила. Именно это значение оказывает сильное влияние на крыло. Чем данное воздействие сильнее, тем более мощными и рельефными образуются вихри.

Различные марки самолетов, предусматривающие концевой вихрь крыла

Скорость потоков воздуха иногда меняется, однако можно примерно определить, что если диаметр вихревого следа составляет около 8-15 м, следует говорить о значении 150 км/ч. Концевой вихрь может образовываться различным образом. Данный процесс зависит от марки, конфигурации самолета. Заслуживают внимание мощные истребители «Мираж 2000» и F-16C, если переходят в положение при полете с высоким углом атаки.

Процесс появления концевого вихря

Концевой вихрь визуализируется благодаря специальному трассер-генератору, отвечающему за должное представление дымного следа. Действие данного элемента обусловлено изменением в состоянии атмосферы, что продолжается довольно длительное время. Затем окружная скорость движения постепенно затихает, то есть визуальный объект теряется и исчезает.

Под действием времени окружная скорость вихря затухает, из-за чего визуальная картинка меняет очертания до тех пор, пока полностью не растворится. Ощутимая интенсивность вихря может продолжаться примерно до двух минут после того, как самолет пролетел конкретное место. Такой вихрь имеет возможность значительно воздействовать на режим полета самолета, который попал в область атмосферы, возмущенной от действия двигателя предыдущего транспортного средства.

Длительное наблюдение за концевым вихрем

Когда вихри подвергаются взаимодействию между собой, они медленно опускаются и расходятся, то есть ощутимое изменение в атмосфере исчезает. Инверсионный след самолета представляет собой отличный объект для того, чтобы наблюдать за его превращениями. Примерно через 30 — 40 секунд он начинает изменять очертания, так как на него усиленно влияет вихрь, который постепенно развивается. Когда пересекаются и инверсионный, и вихревой слои, создаются причудливые формы, которые можно заранее просчитать, так как на процесс их образования действуют различные закономерности.

Количество полос и высота инверсионного следа регулируется количеством и расположением двигателей в системе. При этом инверсионный след не только парит в воздухе, но и постоянно видоизменяется, создавая интересные контуры. Чаще всего наблюдается скручивание данного слоя под воздействием концевого вихря. Все трансформации слоя отражают разнообразные аэродинамические процессы, которые всегда образуются при осуществлении полета.

Отрывно-вихревые течения

Иногда пилоты вынуждены выполнять различные атаки, которые осуществляются с большим углом наклона, составляющим более 20 градусов. В этом случае характер обтекания контуров самолета на время значительно меняется. Начинают появляться отрывные области, которые преимущественно фиксируются около верхней поверхности крыла и фюзеляжа. В них сильно понижается давление, поэтому сразу начинается концентрация и приумножение атмосферной влаги. Благодаря данному аспекту наблюдать за совершением полета самолета можно без использования трассеров.

Условия для появления отрывно-вихревого эффекта

Если угол атаки слишком большой, вокруг самолета образуется значительный по величине ореол из облака. Когда самолет пролетает, данное облако автоматически переходит в вихревой инверсионный след от самолета. Обычно у бомбардировщиков возле крыльев образовываются области отрыва, из-за чего отчетливо наблюдается появление вихревого жгута. Так выглядит инверсионный след, фото которого всегда завораживают.

Горячие следы ракет

Иногда при запуске ракет приходится сталкиваться с такими случаями, когда наблюдается срывное течение в области газо-воздушного тракта, находящегося в силовой установке ракеты. Газовая струя, отходящая от ракетного двигателя, отличается высокой температурой, поэтому иногда попадает в воздухозаборник самолета-носителя, что случается при постановке устройства на некоторые режимы.

Воздушный поток становится слишком неравномерным по температуре, так как подвергается воздействию газов повышенной температуры, из-за чего воздух, поступающий в двигатель, становится измененным. Образуется помпаж двигателя, то есть возникает срывное течение в системе. Чтобы выявить этот процесс, наблюдают за основными камерами сгорания, так как воздушный поток подвергается продольным колебаниям, проходя по тракту двигателя, а затем отмечается выбросом пламени из данных элементов. Так появляется инверсионный след от ракеты.

Особенности инверсионного следа при проведении испытаний

Часто пуски ракетного вооружения проводят в концепции осуществления испытаний. Исключением является бортовая аппаратура, которая служит для целей записывания и хранения информации. Часто самолет-фотограф выпускается вместе с носителем, при этом осуществляется процесс киносъемки, что позволяет зафиксировать все явление на камеру. Часто можно встретить такой инверсионный след от ракеты «Бук».

Часто пуск ракеты осуществляется на относительно небольших скоростях, чтобы лучше зафиксировать весь процесс. При этом нередко образуется помпаж двигателя, так как горячие газы струями попадают в ракетный двигатель, что выводит из строя его воздухозаборник. Сразу отмечается выброс пламени, что характерно при возникновении помпажа. Так выражается инверсионный след FSX.

Из-за этого происшествия двигатель останавливается. Данные особенности после исследования помогли создать целый ряд различных систем, в задачи которых входит своевременная диагностика помпажа, предпринятие мер по его ликвидации, а также перевод двигателя на оптимальный режим работы с постоянным поддержанием его оптимального состояния. Ракетное вооружение в этом случае расширяет сферу применения, при этом на каждом режиме работы двигателя данные летательные аппараты способны показывать наиболее стабильное состояние.

Проводились испытания самолета «МиГ-29», которые заключались в дозаправке топлива. При одном из полетов был зафиксирован выброс топливной жидкости в атмосферу, чему предшествовала разгерметизация топливного трубопровода. С помощью самолета-фотографа была зафиксированная данная необычная ситуация. При этом определенная часть топлива попала в двигатель, что практически моментально привело к его остановке из-за помпажа.

Кроме выброса пламени, что всегда случается при помпаже двигателя, произошло воспламенение топлива, которое шло по воздушному каналу. После этого пламя охватило все топливо и вышло за пределы внутренней конструкции, однако практически мгновенно было снесено встречным потоком воздуха. Из-за данной ситуации проявилось необычное явление, которое назвали огненным шаром. Данный инверсионный след «Бук» также способен передать.

Яркий след форсажа

Современные истребительные самолеты обладают двигателем, который оснащен регулируемыми соплами, классифицирующимися как сверхзвуковые. Когда подключается форсажный режим работы, давление на срезе сопла значительно выше, чем этот показатель у окружающих воздушных масс. Если анализировать пространство на значительном расстоянии от сопла, давление постепенно уравнивается. Данный аспект при движении самолета приводит к повышенной продукции газа, что и приводит к тому, что образуется яркий инверсионный след от самолета, появляющийся при движении летательного аппарата.

След в небе на реактивном самолете Stock Photo

Похожие изображения

Самолет в небе

Реактивный самолет со следом пара за чистым голубым небом

Реактивный самолет в небе

Самолет с белыми следами конденсата. Реактивный самолет на голубом небе и белых облаках с следом пара.Путешествие на самолете концепции.

Sky — сердце реактивного потока

Самолет со следом белого дыма в его сердце от реактивных самолетов на фоне голубого неба.

Самолет летит в ясном голубом небе с белым следом по маршруту. Струя с инверсией на высокой скорости

Реактивный самолет с длинным белым следом пролетает над воздушным шаром в красивом голубом небе

Самолет в небе с реактивным следом

Самолет летит в небе.Самолет в голубом небе с следом пара. Jet Trail.

Самолет, летящий в небе, след реактивного самолета и полумесяц

Самолет в небе с реактивным двигателем т

Пассажирский самолет в голубом облачном небе.

Самолет

.

Jet Trail Самолет в вечернем небе. Белый след самолета в небе

Мы жертвуем 10% дополнительных гонораров нашим спонсорам в качестве стимула для борьбы с COVID-19

Другие видеоматериалы из тех же категорий

Вид на слой струи самолета, загрязнение самолета на небе, белые следы пара к вечеру.

Самолет, летящий высоко в небе

Два самолета в вечернем небе

Летающий объект или самолет медленно пролетает сквозь ветви дерева, оставляя за собой след и дым.

Разворот самолета, вид через окно

Темные облака

Ночная луна, фантазия

Красивая четкая зацикленная анимация крупного плана восхода или заката. Большое раскаленное солнце в искаженном теплом воздухе над горизонтом

Красивый закат и удивительные разноцветные облака.Промежуток времени.

Страшная дверь в лесу

Timelapse кадры облаков на закате

Пальмы летом

Закат с морскими волнами в штате Гоа. Индия.

Замедленная съемка. Вид снизу флага Шри-Ланки.

.

Белый след в небе на реактивном самолете Stock Image

Похожие изображения

Самолет с белыми следами конденсата. Реактивный самолет на голубом небе и белых облаках с следом пара. Путешествие на самолете концепции.

Самолет со следом белого дыма в его сердце от реактивных самолетов на фоне голубого неба.

Самолет летит в ясном голубом небе с белым следом по маршруту.Струя с инверсией на высокой скорости

Реактивный самолет с длинным белым следом пролетает над воздушным шаром в красивом голубом небе

Самолет в небе

След от реактивного самолета белые облака голубое небо

Абстрактный фон из реактивных облаков или инверсионных следов, которые означают следы конденсата, создаваемые двигателем самолета, оставляют белый след

Самолет в голубом небе.Самолет оставляет за собой белый след конденсации или инверсионный след. Концепция путешествия

Инверсионный белый след в ярко-синем небе оставляет реактивный самолет. Луна

Голубое небо, белые облака и след струи

Реактивный самолет в небе

Белый след от самолета на фоне голубого неба

Белый паровой след от реактивного самолета на голубом небе

Инверсионный след от самолета в голубом небе, белая полоса облаков

.

След реактивного самолета в небе стоковое видео. Видео неба

Похожие видеоматериалы

Реактивный самолет высоко в небе, оставляя белый след.

Слой реактивного самолета на небе с облаками, белый след пара днем. След самолета

Большой пассажирский сверхзвуковой самолет, летящий высоко в ясном голубом небе, оставляя длинный белый след.Самолеты вылетают по диагонали

Реактивный самолет летит вниз в ярко-синем небе, оставляя белый след

Реактивный самолет в небе

Следы реактивного самолета в голубом небе

Реактивный самолет пролетает над облачным небом

Реактивный самолет летит сквозь облака на ярко-голубом небе

Самолет летит по голубому небу и оставляет за собой след

След самолета в ясном небе высоко далеко на заднем плане

Реактивный самолет авиалайнер летит, оставляя следы пара через небо, облака и солнце на закате

Самолет реактивного следа в вечернем небе.Белый след самолета в небе

Одномоторный самолет взлетает в небо, оставляя в небе след.

Пассажирский самолет летит в чистом небе, оставляя за собой дымовой след

.

< NEXT Ситуация вим авиа: Ситуация вокруг "ВИМ-Авиа" - ТАСС Ситуация вим авиа: Ситуация вокруг "ВИМ-Авиа" - ТАСС

PREV > Ellinair официальный сайт онлайн: Ellinair | купить дешевые авиабилеты Ellinair официальный сайт онлайн: Ellinair | купить дешевые авиабилеты

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *